The Pandas Numpy library provides some useful methods to perform slicing, reshaping, and concatenation. The following program show you how to perform these operations
#a.Array slicing, reshaping, concatenation and splitting #1.Slicing import numpy as np import pandas as pd a = np.arange(20) print("------------------------------------") print("1.Slicing") print("------------------------------------") print("The array is :"); print(a) print("Slicing of items starting from the index:") print (a[2:8]) #2.reshaping print("------------------------------------") print("2.Reshaping") print("------------------------------------") data = pd.DataFrame(np.arange(6).reshape((2, 3)), index=pd.Index(['Ohio', 'Colorado'], name='state'), columns=pd.Index(['one', 'two', 'three'], name='number')) print("------Before Reshaping--------------") print(data) result = data.stack() print("------After Reshaping--------------") print(result) #3.Concatenation print("------------------------------------") print("3.concatenation") print("------------------------------------") s1 = pd.Series([0, 1], index=['a', 'b']) s2 = pd.Series([2, 3, 4], index=['c', 'd', 'e']) s3 = pd.Series([5, 6], index=['f', 'g']) c=pd.concat([s1, s2, s3]) print(c) print("------------------------------------") print("3.Arrays Splitting") print("------------------------------------") arr = np.array([1, 2, 3, 4, 5, 6]) print("before splitting array is",arr) new = np.array_split(arr, 3) print(" New arrays are") print(new[0]) print(new[1]) print(new[2])
The output is as follows
------------------------------------ 1.Slicing ------------------------------------ The array is : [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] Slicing of items starting from the index: [2 3 4 5 6 7] ------------------------------------ 2.Reshaping ------------------------------------ ------Before Reshaping-------------- number one two three state Ohio 0 1 2 Colorado 3 4 5 ------After Reshaping-------------- state number Ohio one 0 two 1 three 2 Colorado one 3 two 4 three 5 dtype: int32 ------------------------------------ 3.concatenation ------------------------------------ a 0 b 1 c 2 d 3 e 4 f 5 g 6 dtype: int64 ------------------------------------ 3.Arrays Splitting ------------------------------------ before splitting array is [1 2 3 4 5 6] New arrays are [1 2] [3 4] [5 6]
0 comments :
Post a Comment
Note: only a member of this blog may post a comment.